WS 2016/17

Symplectic Geometry

Homework 8

Exercise 1. (10 points)

Prove the Arnold Conjecture for the \mathcal{C}^1 small case, i.e. prove that if M is a compact symplectic manifold and $\phi: M \to M$ is a Hamiltonian diffeomorphism, sufficiently close to the identity in \mathcal{C}^1 topology, then

the number of fixed points of $\phi \geq \operatorname{Crit}(M)$

where $\operatorname{Crit}(M)$ is the minimal number of critical points a smooth function $f: M \to \mathbb{R}$ may have.

Exercise 2. (10 points) Exercise 2 from Homework 6 (page 50) in *Lectures on Symplectic Geometry* by A. Cannas da Silva.

Exercise 3. (10 points)

Recall the setting of the proposition where we prove that any symplectic vector space (V, Ω) has a compatible complex structure J. Let $A: V \to V$ be the linear isomorphism satisfying $\Omega(v, u) = G(Av, u)$. Prove:

(i)
$$J^T = -J$$
,

(ii) J is compatible with Ω .

Hint for (i): Show that A is skew symmetric and that it commutes with $(AA^T)^{-1/2}$ (so also with J). You may want to use the splitting of V into eigenspaces of AA^T .

Exercise 4. (10 points)

Let (V, Ω) be a symplectic vector space and J be a complex structure on V. Prove that the following are equivalent:

- 1. J is compatible with Ω .
- 2. The bilinear form $g_J \colon V \times V \to \mathbb{R}$ defined by

$$g_J(v,w) = \Omega(v,Jw)$$

is symmetric, positive definite and J-invariant.

3. The form $H: V \times V \to \mathbb{C}$ defined by

$$H(v,w) = \Omega(v,Jw) + i\Omega(v,w)$$

is complex linear in w, complex anti-linear in v, satisfies $H(v, w) = \overline{H(w, v)}$, and has a positive definite real part. Such a form is called a **Hermitian inner product** on (V, J). Here V is viewed as a vector space over \mathbb{C} , with the multiplication by i given by the action of J. Thus the condition that H is complex linear in w is understood as H(v, Jw) = iH(v, w), etc.

> Hand in: Thursday December 15th in the exercise session in Übungsraum 1, MI